RNA determinants of translational operator recognition by the DNA polymerases of bacteriophages T4 and RB69.
نویسندگان
چکیده
The DNA polymerases (gp43s) of the two related phages T4 and RB69 are DNA-binding proteins that also function as mRNA-binding autogenous translational repressors. As repressors, T4 gp43 is narrowly specific to its own mRNA whereas RB69 gp43 is equally effective against mRNA for either protein. We used in vitro RNase-sensitivity and RNA footprinting assays to identify features of the non-identical T4 and RB69 mRNA targets (translational operators) that allow for their identical binding affinities and biological responses to RB69 gp43. We observed that T4 gp43 and RB69 gp43 produce identical footprints on RNA substrates bearing the T4-derived operator, suggesting that the two gp43s make identical contacts with this operator. In contrast, the footprint produced by RB69 gp43 on its autogenous RNA target was shorter than its footprint on operator RNA from T4. As expected, we also observed only weak protection of RB69-derived operator RNA from RNase by T4 gp43; however, photocross-linking studies suggested that T4 gp43 recognizes structural features of the RB69-derived operator that are not detected by RNase- sensitivity assays. The results suggest that RB69 gp43 and T4 gp43 differ in their abilities to use RNA-sequence-independent interactions to configure potential RNA targets for translational repression.
منابع مشابه
Regions of bacteriophage T4 and RB69 RegA translational repressor proteins that determine RNA-binding specificity.
RegA protein of T4 and related bacteriophages is a highly conserved RNA-binding protein that represses the translation of many phage mRNAs that encode enzymes involved in DNA metabolism. RB69, a T4-related bacteriophage, has a unique regA gene, which we have cloned, sequenced, and expressed. The predicted amino acid sequence of RB69 RegA is 78% identical to that of T4 RegA. Plasmid-encoded RB69...
متن کاملKinetics of error generation in homologous B-family DNA polymerases
The kinetics of forming a proper Watson-Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4...
متن کاملDivergence of a DNA replication gene cluster in the T4-related bacteriophage RB69.
The genomes of bacteriophages T4 and RB69 are phylogenetically related but diverge in nucleotide sequence at many loci and are incompatible with each other in vivo. We describe here the biological implications of divergence in a genomic segment that encodes four essential DNA replication proteins: gp45 (sliding clamp), gp44/62 complex (clamp loader), and gp46 (a recombination protein). We have ...
متن کاملThe sequences and activities of RegB endoribonucleases of T4-related bacteriophages.
The RegB endoribonuclease encoded by bacteriophage T4 is a unique sequence-specific nuclease that cleaves in the middle of GGAG or, in a few cases, GGAU tetranucleotides, preferentially those found in the Shine-Dalgarno regions of early phage mRNAs. In this study, we examined the primary structures and functional properties of RegB ribonucleases encoded by T4-related bacteriophages. We show tha...
متن کاملDNA polymerase of bacteriophage T4 is an autogenous translational repressor.
In bacteriophage T4 the protein product of gene 43 (gp43) is a multifunctional DNA polymerase that is essential for replication of the phage genome. The protein harbors DNA-binding, deoxyribonucleotide-binding, DNA-synthesizing (polymerase) and 3'-exonucleolytic (editing) activities as well as a capacity to interact with several other T4-induced replication enzymes. In addition, the T4 gp43 is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 30 15 شماره
صفحات -
تاریخ انتشار 2002